If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+30x-350=0
a = 10; b = 30; c = -350;
Δ = b2-4ac
Δ = 302-4·10·(-350)
Δ = 14900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14900}=\sqrt{100*149}=\sqrt{100}*\sqrt{149}=10\sqrt{149}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{149}}{2*10}=\frac{-30-10\sqrt{149}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{149}}{2*10}=\frac{-30+10\sqrt{149}}{20} $
| 7t=4-8t | | y*0.2=9984 | | 6/4=1/x | | X-3×x=180 | | 4/6=x/1 | | 6/4=x/1 | | 15t=11*t+5 | | 0.8=(x-2)/x | | X^2-2x-24=6x | | 1-2x/7-2-3x/8=3/2+3/4 | | 2x^2-28x=-66 | | 2x^2-28x=66 | | 0=10+10t-4.9t^2 | | 0=10+10t+4.9t^2 | | .9=x-1/x | | 0.9=x-1/x | | 63x^2-3x-30=0 | | 21x^2-1x-10=0 | | x+9/7=6 | | 7x-24=6x+17 | | x=(16*0,64) | | x=16*0.64 | | 2(4x+3)=9x+5 | | 2x-2=-4x+16 | | 5(2x-4)=12 | | -2y-2=4y-y+2 | | 3(7+2y/9)-5y=4 | | z^2-2z-7/4=0 | | 4x^2+50x+96=0 | | 4d-15=9d+13 | | 4.8+x=5.8 | | z^2-3z-7/4=0 |